
Функция y=sin x ,
её свойства и график .

Построение графика функции y = sin x.

Построение графика функции y = sin x.

Построение графика функции y = sin x.
![Функция у = sin x. 1. Областью определения функции является множество всех действительных чисел ( R ) 2. Областью изменений (Областью значений) - [ - 1; 1 ]. 3. Функция у = sin α нечетная, т.к. sin (- α) = - sin α Функция периодическая, с главным периодом 2 π. sin ( α + 2π ) = sin α. 5. Функция непрерывная Убывает: [ π/2; 3π/2 ]. 6. Возрастает: [ - π/2; π/2 ]. + + + - - -](http://fsd.intolimp.org/html/2017/02/13/i_58a21db2ccc88/img_phpsgoI7J_prezen.otkr.urok.usinh_4.jpg)
Функция у = sin x.
1. Областью определения функции является множество
всех действительных чисел ( R )
2. Областью изменений (Областью значений) - [ - 1; 1 ].
3. Функция у = sin α нечетная, т.к. sin (- α) = - sin α
- Функция периодическая, с главным периодом 2 π.
sin ( α + 2π ) = sin α.
5. Функция непрерывная
Убывает: [ π/2; 3π/2 ].
6. Возрастает: [ - π/2; π/2 ].
+
+
+
-
-
-

Функция y=sin x , график и свойства .
1)D(y)=
2)E(y)=
3)
4)sin(-x)=-sin x
5)Возрастает на
Убывает на
6) Периодичная

Синусоида
у
1
-π/2 π 2π 3π х
-π 0 π/2 3π/2 5π/2
-1

Свойства функции y = sin x
у
1
-π/2 π 2π 3π х
-π 0 π/2 3π/2 5π/2
-1

- y = sin(x+π/6)
y
1
-π π 2π х
-1
у = sin(x+a)

1)y= sin x + 1; 2)y= sin x - 2
y
1 x'
-π 0 π 2π x
-2 x''
у = sin(x+a)

Построение графиков y=sin(x+m)+n
1)y= sin x ; 2)y= sin(x+π/6); 3)y= sin(x-π/3); 4)y= sinx+1; 5)y= sinx-3/2
y
1
-π 0 π 2π 3π x



![Наибольшее и наименьшее значения функции на промежутке y=sin x на [-2 π/3;π/6] 1 -1 Ответ:](http://fsd.intolimp.org/html/2017/02/13/i_58a21db2ccc88/img_phpsgoI7J_prezen.otkr.urok.usinh_14.jpg)
Наибольшее и наименьшее значения функции на промежутке
y=sin x на [-2 π/3;π/6]
1
-1
Ответ:

№ 10.1 (а, б).

№ 10.3 (а, б).

№ 10.5 (а, б).

№ 10.6 (а, б).

№ 10.7 (а, б).

№ 10.3 (в,г),
10.5 (в,г),
10.7 (в,г).
