Подготовка к ЕГЭ по математике (В4) Решение комбинаторных задач
Зарьянцева В.П.
Комбинаторика
Правило
Формулы
суммы
произведения
Перестановки
Размещения
Сочетания
Правило суммы
- Если элемент x можно выбрать способами n x и если элемент y можно выбрать n y способами, то выбор «либо x , либо y » можно осуществить способами n x + n y .
Любой цвет
Выбираем один шар
Nx +N y =4+5=9 способов
N x =4
N y =5
Пример 1
- В коробке 10 тетрадей в клетку и 5 тетрадей в линию. Сколькими способами можно выбрать одну тетрадь?
- Решение: или – логическая сумма
- 10+5=15 (выбор неважен)
- Пример1. Сколько существует способов выбрать кратное двум или трем число из множества чисел : 2,3,4,15,16,20,21, 75,28 ?
- Решение:
- к1=5 –кратное 2 (2,4,16,20,28),
к2=4 – кратное 3 (3,15,21,75)
- к1+к2 = 5+4 = 9
Правило произведения
- Если элемент x можно выбрать n x способами и если после его выбора элемент y можно выбрать n y способами, то выбор упорядоченной пары (x, y) можно осуществить n x ∙ n y способами.
Синий и рыжий
Выбираем пару шаров
Nx ∙N y =4∙5=20 способов
N x =4
N y =5
Пример 2
- В магазине "Все для чая'' есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?
- 5*3=15
Пример 2. а) Сколько различных двузначных чисел можно составить из цифр 1,3,5,7,9?
Решение: N= 5х5 = 25 ( Если не сказано, что элемент не повторяется, то выборка с повторениями)
б) Сколько среди них чисел, кратных 5?
Решение: Число кратно 5, если оканчивается цифрой 5 или 0. В нашем случае – 5.
На первой позиции фиксируем одну из пяти цифр, на второй – 5.
N= 5 х1 =5
- Пример5 . Несколько стран в качестве символа своего государства решили использовать флаг в виде четырех горизонтальных полос, одинаковых по ширине, но разных по цвету: белый, синий, красный, зеленый. У каждой страны свой, отличный от других, флаг.
- а ) Сколько всего стран могут использовать такую символику?
- Решение : Цвет верхней полосы можно выбрать одним из 4 способов, второй полосы – одним из трех оставшихся, цвет 3 полосы – одним из 2 оставшихся, а 4 – одним способом. По правилу произведения N= 4х3х2х1=24
- б ) Сколько стран могут использовать такую символику с синей и красной полосами, расположенными рядом?
- Решение : Две полосы, всегда расположенные рядом, можно рассматривать как одну полосу, тогда полос останется 3, из них можно составить 3х2х1=6 разных флагов. Но две полосы (синюю и красную) можно «склеить» по-разному: синяя, а под ней красная, или красная, а под ней синяя. Поэтому общее количество вариантов по правилу суммы равно 6+6=12
- Пример7 . Сколькими способами можно посадить шестерых школьников на скамейку так, чтобы Коля и Оля оказались рядом?
- Решение : Будем считать, что на скамейке 6 пустых мест. Посадить Колю можно шестью способами, после чего Олю посадить рядом с ним одним или двумя способами. Это зависит от того, куда мы посадили Колю – на крайнее место или нет.
- Пусть Коля сидит на краю. Место на краю можно выбрать 2 способами, после чего Олю можно посадить одним способом, после чего оставшиеся 4 места можно занять 4х3х2х1 способами, значит, всего 2х1х4х3х2х2=48 способов
Коля сидит где-то в середине. Место для Коли можно выбрать 4 способами, Олю можно посадить 2 способами, значит, всего
4х2х4х3х2х1=192 способами.
- По правилу сложения 48+192= 240 способов
Определите n (общее количество объектов) и m (сколько объектов выбираем)
ПОРЯДОК ВАЖЕН?
НЕТ
ДА
НУЖНО ВЫБРАТЬ ВСЕ n ЭЛЕМЕНТОВ
ПОВТОРЕНИЯ ЕСТЬ?
НЕТ
ДА
НЕТ
ДА
СОЧЕТАНИЯ С ПОВТОРЕНИЯМИ
СОЧЕТАНИЯ
Повторения есть
Повторения есть
ДА
ДА
НЕТ
НЕТ
Перестановки с повторениями
Размещения с повторениями
Размещения
Перестановки
13
Перестановки
Перестановки без повторений
- Перестановками без повторений из n различных элементов называются все возможные последовательности этих n элементов. Число перестановок без повторений из n элементов равняется
по определению
Перестановки без повторений
6 различных перестановок
Сколькими способами 4 человека могут разместиться в четырехместном купе?
Задача 19 . Даны цифр: 1,2,3,4,5,6,7. Сколько различных чисел можно составить из этих цифр? Каждое число является перестановкой из 7 элементов.
Примеры: 1234567, 2354167, 7546321 .
Перестановка-упорядоченное множество.
Число перестановок из n элементов вычисляют по формуле P n =n! .
По условию n=7
Так из 7 цифр можно 7!=1*2*3*4*5*6*7=5040 различных чисел.
Перестановки с повторениями
- Перестановки с повторением из n элементов k типов
- число элементов 1-го типа n 1 ; число элементов 2-го типа n 2 ; …; число элементов k -го типа n k ,
- все возможные последовательности исходных n элементов. Число перестановок с повторениями обозначают
- подсчитывают так:
Перестановки с повторениями
n=n 1 +n 2 = 2+1 = 3
n 2 = 1
n 1 = 2
3 различные перестановки
Пример 4
- Дворовая футбольная команда выбирает капитана и его заместителя. Сколькими способами это можно сделать, если в команде 11 человек?
Пример 5
- Сколько различных гирлянд можно сделать, если у нас 5 красных, 7 синих и 4 желтых светодиода?
Пример Даны цифр: 1,2,2,3,3,3,4,. Сколько различных чисел можно составить из этих цифр? Каждое число является перестановкой из 7 элементов.
Примеры: 1223334, 4232331,2233314.
Некоторые числа при перестановке одинаковых цифр не меняются.
По условию n = 7, n1=2 , n2 =3
- Сколькими способами можно поселить 7 студентов в три комнаты: одноместную, двухместную и четырехместную?
- Сколько различных гирлянд получится, если замкнуть гирлянду из предыдущей задачи в кольцо?
Размещения
(выборки)
Размещения без повторений
- Размещениями без повторений из n различных элементов по m элементов называются все такие последовательности m различных элементов, выбранных из исходных n , которые отличаются друг от друга или порядком следования элементов, или составом элементов.
- Число размещений без повторений из n элементов по m обозначается символом
Размещения без повторений
Выбираем два шара
n= 3
Порядок выбора важен!
m=2
6 различных выборок
Расписание одного дня состоит из 5 уроков. Определить число вариантов расписания при выборе из 11 дисциплин .
Пример
- Из группы в 15 человек выбирается 4 участника эстафеты 800+400+200+100. Сколькими способами можно расставить спортсменов по этапам эстафеты?
Размещения с повторениями
- Размещения с повторениями из элементов k типов по m элементов ( k и m могут быть в любых соотношениях) называются все такие последовательности m элементов, принадлежащих исходным типам, которые отличаются друг от друга или порядком следования элементов, или составом элементов.
Размещения с повторениями
n= 3
8 вариантов выборок
k= 2
Пример 8
- Назовем натуральное число "симпатичным", если в его записи встречаются только нечетные цифры. Сколько существует четырехзначных "симпатичных" чисел?
- k=5 порядок важен
Шифр сейфа состоит из 6 цифр, которые должны набираться последовательно и могут повторяться. Чему в этом случае равно общее число всех возможных комбинаций шифра?
Сочетания
Сочетания без повторений
- Сочетаниями без повторений из n различных элементов по m элементов называются все такие последовательности m различных элементов, выбранных из исходных n , которые отличаются друг от друга составом элементов.
Сочетания без повторений
Выбираем два шара
Порядок выбора не важен!
n= 3
3 сочетания
m=2
Пример 9
- Сколькими способами можно выбрать трех дежурных из группы в 20 человек?
Сколькими способами можно вывезти со склада 10 ящиков на двух автомашинах, если на каждую автомашину грузят по 5 ящиков.
Сочетания с повторениями
- Сочетаниями с повторениями из элементов k типов по m элементов ( m и k могут быть в любых соотношениях) называются все такие последовательности m элементов, принадлежащих исходным типам, которые отличают друг от друга составом элементов.
Сочетания с повторениями
m= 3
4 варианта сочетаний
k= 2
Пример 10
В вазе стоят 10 красных и 4 розовых гвоздики. Все цветы на внешний вид одинаковы. Сколькими способами можно выбрать 3 цветка из вазы?
Решение Так как по условию задачи все цветы на внешний вид одинаковы, то мы получаем формулу без повторений. Вы выбираем цветы в букет, порядок выбора не важен, следовательно, мы получаем формулу сочетаний без повторений: два типа цветов, выбираем три цветка.
В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить 12 открыток для поздравлений?
- Один выбор (анализ) элементов или несколько? Если один, то см. п.3
- Каким союзом варианты выбора (анализа) соединяются? «И» – правило произведения, «или» – правило суммы.
Для каждого выбора задаются следующие вопросы:
- Все элементы используются? Если «да», то это перестановки. Переходим к п. 5.
- Порядок выбора элементов важен? Если «да», то это размещения, «нет» – сочетания.
- Есть ли одинаковые элементы? Если «да» – то формула с повторениями, «нет» – без повторений.
Сколько различных гирлянд можно сделать из 10 светодиодов разного цвета?
При замыкании линии в кольцо перестановки, являющиеся циклическими сдвигами относительно друг друга, становятся одинаковыми. Возьмем, например, следующую перестановку и посмотрим, сколько других перестановок явлюяются ее циклическим сдвигом: 1. ккккксссссссжжжж 2. кккксссссссжжжжк 3. ккксссссссжжжжкк ... 15. жжккккксссссссжж 16. жккккксссссссжжж Следовательно, все перестановки разбиваются на группы по 16 цепочек в группе. Итак, число кольцевых гирлянд будет
13
Пример 11
- Световое табло состоит из лампочек. Каждая лампочка может находиться в одном из трех состояний («включено», «выключено» или «мигает»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 18 различных сигналов?
- У людоеда в подвале томятся 25 пленников.
- а) Сколькими способами он может выбрать трех из них себе на завтрак, обед и ужин?
- б) А сколько есть способов выбрать троих, чтобы отпустить на свободу?
Решение 25*24*23 = 13800 способов.
Заметим, что в предыдущем пункте каждую тройку пленников мы посчитали 3·2·1 = 6 раз. Поскольку теперь их порядок нам неважен, то ответом будет число 13800 : 6 = 2300.
Волонтеры разделились на две равные группы для розыска заблудившегося ребенка. Среди них только 4 знакомы с местностью. Каким числом способов они могут разделиться так, чтобы в каждую группу вошло 2 человека, знающих местность, если всего их 16 человек?
Решение Мы делим всех волонтеров на две равные группы, то есть выбираем участников первой группы, а все остальные переходят в другую группу. Один выбор. Теперь рассмотрим этот выбор первой группы. Выбор состоит из выбора волонтеров, знающих местность, и выбора волонтеров, незнающих местность. Следовательно, будем соединять эти два числа правилом произведения . Найдем число выборов волонтеров, знающих местность. Всего таких волонтеров 4 человека. Нам нужно 2. Порядок выбора не важен. Сочетания без повторений.
Найдем число выборов волонтеров, незнающих местность. Всего их 16-4=12 , выбираем шесть человек (ровно половину). Общее число выборов:
- Сколько существует натуральных чисел, меньших 256 10 , таких, что в записи каждого числа в двоичной системе счисления будет равное количество единиц и значащих нулей. В ответе укажите целое число.
Решение Переведем данное число из десятичной системы счисления в двоичную. 256 10 =100000000 2 Следовательно, числа меньше данного состоят из восьми, семи, шести, пяти, четырех, трех, двух и одного разряда.
1) Рассмотрим восьмиразрядные числа. 1ХХХХХХХ. Так как мы точно знаем сколько нулей и единиц, то мы используем формулу перестановки с повторениями.
2) Рассмотрим семиразрядные числа. Очевидно, что такие числа не удовлетворяют условию задачи, так как не могут состоять из одинакового числа единиц и нулей. Аналогичный вывод можно сделать о пятиразрядных, трехразрядных и одноразрядных числах.
3) Рассмотрим шестиразрядные числа. Рассуждая аналогично п.1 получаем:
4) Четырехразрядные числа.
5) Двухразрядное число только одно 10 2
Итак, у нас может быть или восьмиразрядное число, или шестиразрядное число, или четырехразрядное число, или двухразрядное число. Правило суммы.
Пример 15
- В коробке находятся 16 шариков – 4 красных, 4 синих и 8 черных. Из коробки наугад вынули два шарика. Какое из перечисленных сообщений несет в себе наибольший объем информации?
- Один из вынутых шариков – красного цвета, а другой – синего;
- Один из вынутых шариков – синего цвета, а другой – черного;
- Оба вынутых шарика красного цвета;
- Оба вынутых шарика черного цвета;
- Цвета вынутых шариков отличаются друг от друга;
- Вынуты шарики одного и того же цвета.
Сколькими способами можно расставить белые фигуры (короля, ферзя, 2 ладьи, 2 слонов и 2 коней) на первой линии шахматной доски?
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составляются всевозможные пятизначные числа, не содержащие одинаковых цифр. Определить количество чисел, в которых есть цифры 2, 4 и 5 одновременно.
Решение
В этой задаче нам обязательно нужно использовать цифры 2, 4 и 5. Но они могут стоять на разных местах и в разном порядке. У нас три "важные" и две "неважные" цифры в числе - два типа цифр. Это перестановки с повторениями.
Теперь посчитаем сколько различных перестановок "важных" цифр между собой. Это перестановки без повторений
Итак у нас 60 различных перестановок. Теперь посчитаем, сколько различных "неважных" цифр может быть в каждой из этих перестановок. Мы выбираем две "неважные" цифры из шести. Порядок выбора важен . Это размещения без повторений .
В стране 20 городов, каждые два из которых соединены авиалинией. Сколько авиалиний в этой стране?
- Решение:
- Каждая авиалиния соединяет два города. В качестве первого города можно взять любой из 20 городов (город А), а в качестве второго – любой из 19 оставшихся (город В). Перемножив эти числа, получаем 20 • 19 = 380.
- Однако при этом подсчете каждая авиалиния учтена дважды (первый раз, когда в качестве первого города был выбран город А, а второго – город В, а второй раз – наоборот). Таким образом, число авиалиний равно 380:2 = 190.