«Зима 2025»

Метаболизм, анаболизм и катаболизм. Фотосинтез.

Обмен веществ и энергии в клетке. Этапы обмена веществ. Метаболизм, анаболизм и катаболизм. Дыхание организма. Фотосинтез. Автотрофные и гетеротрофные клетки. Фотосинтез и дыхание. Фотолиз.

Цели:

Образовательная: дать учащимся понятие о процессах обмена веществ и энергетическом обмене, связи между ними; углубить знания учащихся о способе автотрофного питания организмов, о фотосинтезе; показать связь между световой и темновой фазами фотосинтеза, объяснить значение процесса фотосинтеза в формировании биосферы;

Развивающая: развивать умения слушать лекцию и вести записи конспекта материала урока, анализировать, выделять главное, сравнивать, систематизировать, доказывать, объяснять, ставить и разрешать проблемы.

Воспитательная: сформировать мировоззрение учащихся, систему взглядов и убеждений, воспитание личности социально активной, мобильной и адаптивной.

Оборудование: модели растительных и животных клеток, учебник Беляева Д.К. «Общая биология», 10-11 класс.

Тип урока: изучение нового материала.

Олимпиады: Биология 5 - 11 классы

Содержимое разработки

Урок 4. Обмен веществ и энергии в клетке. Этапы обмена веществ. Метаболизм, анаболизм и катаболизм. Дыхание организма. Фотосинтез. Автотрофные и гетеротрофные клетки. Фотосинтез и дыхание. Фотолиз.

Цели:

Образовательная: дать учащимся понятие о процессах обмена веществ и энергетическом обмене, связи между ними; углубить знания учащихся о способе автотрофного питания организмов, о фотосинтезе; показать связь между световой и темновой фазами фотосинтеза, объяснить значение процесса фотосинтеза в формировании биосферы;


Развивающая: развивать умения слушать лекцию и вести записи конспекта материала урока, анализировать, выделять главное, сравнивать, систематизировать, доказывать, объяснять, ставить и разрешать проблемы.


Воспитательная: сформировать мировоззрение учащихся, систему взглядов и убеждений, воспитание личности социально активной, мобильной и адаптивной.


Оборудование: модели растительных и животных клеток, учебник Беляева Д.К. «Общая биология», 10-11 класс.

Тип урока: изучение нового материала.

Ход урока

I. Изучение нового материала


Обмен веществ и энергии в клетке

Для химических реакций, протекающих в клетке, характерны величайшая организованность и упорядоченность: каждая реакция протекает в строго определенном месте. Молекулы ферментов расположены в один слой на внутренних структурах — мембранах митохондрий и эндоплазматической сети, выстилая их, как кафель стенку. При этом местоположение ферментов не случайно: они расположены в том порядке, в котором идут реакции. Мембраны клетки, выстланные молекулами ферментов, представляют своего рода «каталитический конвейер», на котором с исключительной точностью осуществляются химические реакции.

Пластический и энергетический обмен (ассимиляция и диссимиляция). В клетке обнаружена примерно тысяча ферментов. С помощью этого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных по характеру типа реакций. Первый из них представляет реакции синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных — высокомолекулярные. Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, но и у вполне взрослой, т. е. закончившей рост и развитие, клетки постоянно происходит синтез веществ для замены молекул, израсходованных и износившихся в процессе функционирования или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянной свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называется биологическим синтезом или сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называется пластическим обменом или ассимиляцией. Первое слово происходит от греческого «пластикос», что значит скульптурный. Так же как скульптор из глины или мрамора лепит (высекает) изваяние, так из веществ, синтезированных в процессе биосинтеза, клетка создает свое тело. Второе слово (ассимиляция) происходит от латинского «симилис» (сходный, подобный). Смысл этого термина состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от веществ клетки, в результате химических превращений становятся подобными веществам клетки.

Второй тип химических реакций клетки — реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные — на низкомолекулярные. Белки распадаются на аминокислоты, крахмал — на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуются совсем простые, бедные энергией вещества: СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией, необходимой для ее деятельности. Любая форма активности — движение, секреция, биосинтез и др. — нуждается в затрате энергии, которая черпается из энергии, освобождаемой в результате химических реакций расщепления.

Совокупность реакций расщепления называется энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. Связь эта состоит в том, что, с одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез обслуживающих эти реакции ферментов, так как в процессе своей работы они изнашиваются и разрушаются.

Обмен веществ и энергии

Сложные системы реакций, составляющие процесс пластического и энергетического обмена, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю же среду, выделяются продукты, которые клеткой более не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называется обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Любое проявление жизнедеятельности, любая функция клетки требуют затраты энергии. Энергия нужна для движения, для биосинтетических реакций и различных других форм клеточной активности.

Каким же образом энергия реакций расщепления используется клеткой для различных ее функций?

Любая деятельность клетки всегда точно совпадает во времени с распадом АТФ.

При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышца работает почти исключительно за счет содержащейся в ней АТФ. При усиленной секреции в секреторных клетках также идет интенсивное расщепление АТФ. При синтезе сложных веществ, например при синтезе сложных углеводов или белка, одновременно с синтетической реакцией идет распад АТФ. Отсюда следует, что непосредственным источником энергии и для сокращения мышц, и для секреции, и для синтеза сложных соединений в клетке является энергия, освобождающаяся при расщеплении АТФ. Так как запас АТФ в клетке ограничен, то ясно, что после распада АТФ' должно произойти ее восстановление. Так оно в действительности и происходит. В этом и заключается биологический смысл остальных реакций энергетического обмена. Функция этих реакций одна: их энергия используется для восполнения убыли АТФ. Понятно поэтому, что при длительной работе содержание АТФ в клетке существенно не изменяется. Это объясняется тем, что реакции расщепления углеводов и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ. Таким образом, АТФ — единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время. Синтез АТФ в основном происходит в митохондриях клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.

Три этапа энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на 3 последовательных этапа. Рассмотрим эти этапы на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на небольшие молекулы: из крахмала образуется глюкоза, из жиров — глицерин и жирные кислоты, из белков — аминокислоты, из нуклеиновых кислот — нуклеотиды. Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергия рассеивается в виде тепла.

Второй этап энергетического обмена называется без кислородным или неполным. Вещества, образовавшиеся в подготовительном этапе, — глюкоза, глицерин, органические кислоты, аминокислоты и др. — вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты, обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее на третий и т. Д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере без кислородного расщепления глюкозы, которое имеет специальное название — гликолиза. Гликолиз представляет собой совокупность более десятка последовательных ферментативных реакций. В нем принимают участие 13 ферментов и образуются 12 промежуточных веществ. Не останавливаясь на отдельных реакциях гликолиза, укажем, что на первую ступень ферментного конвейера вступает глюкоза, а с последней сходят две молекулы молочной кислоты. Суммарное уравнение гликолиза должно быть записано так:

C6H12O6 = 2C3H6O3

  Глюкоза Молочная кислота

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока) вызывается молочнокислыми грибками и бактериями. По механизму оно вполне тождественно гликолизу. Спиртовое брожение тоже сходно с гликолизом. Большая часть реакций гликолиза и брожение совпадают полностью. Различие состоит лишь в заключительной стадии: при гликолизе процесс заканчивается образованием молочной кислоты, а при брожении добавляется еще одно звено. Из молочной кислоты под влиянием фермента, содержащегося в дрожжах, выделяется СО2 и образуется этиловый спирт:

C3H6O3 = CO2 + C2H5OH

Таким образом, суммарное уравнение спиртового брожения должно быть записано так:

C6H12O6 = 2CO2 + 2C2H5OH

Глюкоза Этиловый спирт

Как видно из уравнений гликолиза и брожения, в этих процессах кислород не участвует, почему они и называются без кислородными процессами. Вполне ясно также, почему эти процессы называются неполными: полным расщеплением глюкозы будет разрушение ее до конца, т. е. превращение ее в простейшие соединения (СО2 и Н2О), что соответствует уравнению:

C6H12O6 + 6O2 = 6CO2 + 6H2O

Почти все промежуточные реакции при без кислородном расщеплении глюкозы идут с освобождением энергии. Каждая отдельная реакция дает небольшой выход энергии, а в сумме получается немалая величина: расщепление одной грамм-молекулы глюкозы (180 г) на две грамм-молекулы молочной кислоты дает почти 200 кдж (50 000 кал). Если бы энергия, освобождающаяся при превращении глюкозы в молочную кислоту, освободилась сразу, в результате одной реакции, то это привело бы к опасному перегреву и повреждению клетки. Разделение же процесса на ряд промежуточных звеньев обусловливает постепенное выделение энергии, что предохраняет клетку от теплового повреждения.

Процесс гликолиза идет только в присутствии АТФ и АДФ, так как оба эти нуклеотида являются обязательными участниками происходящих реакций. АТФ необходима в начале гликолиза, АДФ — в конце. АТФ фосфорилирует глюкозу: передавая глюкозе остаток фосфорной кислоты, АТФ при этом переходит в АДФ. АДФ обеспечивает обратный процесс: дефосфорилирование промежуточных продуктов гликолиза. Присоединяя остаток фосфорной кислоты, АДФ превращается в АТФ. В конце гликолиза АТФ всегда образуется больше, чем ее тратится в начале. В ходе расщепления одной молекулы глюкозы происходит образование двух новых молекул АТФ. Таким образом, в итоге процесса гликолиза АТФ всегда накапливается.

Так как синтез АТФ представляет эндотермический процесс, то очевидно, что энергия для синтеза АТФ черпается за счет энергии реакций без кислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе без кислородного расщепления грамм-молекулы глюкозы освобождается 200 кдж (50 000 кал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ в АТФ затрачивается 40 кдж (10 000 кал). Входе без кислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2x40 = 80кдж (2X10 000 = 20 000 кал). Итак, из 200 кДж (50 000 кал) только 80 (20 000) сберегаются в виде АТФ, а 120 (30 000) рассеиваются в виде тепла. Следовательно, в ходе без кислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена — стадия кислородного, или полного, расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

Основное условие осуществления этого процесса — наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия без кислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления: СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции без кислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, однако, много больше, чем на каждой ступени без кислородного процесса. В сумме кислородное расщепление дает громадную величину — 2600 кдж (650 000 г-кал) (на две грамм-молекулы молочной кислоты). Если бы при расщеплении содержащейся в клетке молочной кислоты вся энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении же процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование стадии кислородного расщепления показало, что в ней, как и в без кислородном процессе, происходит образование АТФ из АДФ. В ходе кислородного расщепления двух молекул молочной кислоты синтезируются 36 молекул АТФ, т. е. 36 богатых энергией фосфатных связей.

Теперь должно быть ясным значение третьей стадии энергетического обмена — кислородного расщепления молочной кислоты. Если в ходе без кислородного расщепления освобождается 200 кдж (50 000 кал) (на моль глюкозы), то в стадии кислородного расщепления освобождается еще 2600 кдж (650 000 кал) Если в ходе без кислородного процесса синтезируются две молекулы АТФ, то в процессе кислородного расщепления синтезируется еще 36 молекул АТФ. Иными словами, на стадии кислородного расщепления образуется свыше 90% энергии, получаемой клеткой в процессе расщепления глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе процессов без кислородного и кислородного расщепления, синтезируется 2 + 36=38 молекул; АТФ. Таким образом, в потенциальную энергию АТФ переходит 38X40=1520 кдж (38x10 000 = 380 000 кал). Всего же при расщеплении глюкозы (в без кислородную и кислородную стадии), освобождается 200 + 2600 = 2800 кдж (50 000 + 650 000=700 000 кал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12—15%. В лучших турбинах этот процент повышается до 20—25. В двигателях внутреннего сгорания/ он достигает примерно 35%. Таким образом, по эффективности: преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе без кислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, что кислородный процесс несравненно более эффективен, чем без кислородный. В стадии без кислородного расщепления освобождается примерно 1/20 часть энергии, освобождающейся при кислородном процессе. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как без кислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только без кислородный процесс. Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Дыхание и горение

Расщепление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение продуктов окисления — СО2 и Н2О. Однако состав продуктов горения неопределенный и непостоянный, он меняется в зависимости от соотношения окисляемого вещества и кислорода, зависит от температуры и других условий. Дыхание же происходит в результате высокоупорядоченного процесса, ряда последовательных ферментативных реакций. Образование CO2 при горении происходит в результате прямого присоединения кислорода к углероду, а при биологическом окислении CO2 возникает путем расщепления органических кислот под влиянием ферментов.

Таким образом, вполне ясно, что между процессами горения и биологического окисления существует глубокое, принципиальное различие. Дыхание же происходит в результате высокоупорядоченного процесса, ряда последовательных ферментативных реакций. Образование СОг при горении происходит в результате прямого присоединения кислорода к углероду, а при биологическом окислении СО2 возникает путем расщепления органических кислот под влиянием ферментов.

Таким образом, вполне ясно, что между процессами горения и биологического окисления существует глубокое, принципиальное различие.

Автотрофные и гетеротрофные клетки. Фотосинтез. Хемосинтез

Автотрофные клетки. По способу получения органических соединений все клетки делятся на две группы. Одна группа клеток способна синтезировать органические вещества из неорганических соединений (СО2 и Н2О и т. д.). Из этих бедных энергией соединений клетки синтезируют глюкозу, аминокислоты, а затем и более сложные органические соединения: сложные углеводы, белки и т. д. Клетки, способные синтезировать органические соединения из неорганических, называются автотрофными или автотрофами. Главными автотрофами на Земле являются клетки зеленых растений Автотрофное питание присуще также небольшой группе микроорганизмов.

Гетеротрофные клетки. Другая группа клеток не способна синтезировать органические вещества из неорганических соединений. Эти клетки нуждаются в доставке уже готовых органических соединений. Животные поедают других животных и растения и получают с пищей готовые углеводы, жиры, белки. В ходе жизнедеятельности происходит расщепление этих веществ. Из части освободившихся при этом веществ — глюкозы, аминокислот и др. — синтезируются более сложные, присущие данной клетке вещества: гликоген, жиры, белки; другая часть расщепляется, и освобождающаяся при этом энергия используется для жизнедеятельности.

Клетки, не способные к синтезу органических соединений из неорганических веществ и нуждающиеся, поэтому в доставке готовых органических веществ извне, называются гетеротрофными клетками или гетеротрофами. Клетки всех животных, человека, большинства микроорганизмов, а также некоторых растений (например, грибов) являются гетеротрофами.

Фотосинтез. Синтез органических соединений из простых, бедных энергией веществ нуждается в притоке энергии извне. Зеленые растения используют для этой цели световую энергию Солнца. Растительные клетки обладают специальным механизмом, позволяющим им преобразовывать световую энергию в энергию химических связей. Этот процесс называется фотосинтезом.

Процесс фотосинтеза выражается следующим суммарным уравнением:

6СО2 + 6Н2О=C6H12O6+6О2

В ходе этого процесса вещества, бедные энергией (СО2 и Н2О), переходят в углевод — сложное богатое энергией органическое вещество. В результате фотосинтеза выделяется также молекулярный кислород.

Суммарное уравнение фотосинтеза не дает представления о его механизме. Это сложный, многоступенчатый процесс. Центральная роль в нем принадлежит хлорофиллу — органическому веществу зеленого цвета.

В зеленых листьях содержится примерно 1% хлорофилла от сухого веса. Хлорофилл растворяется в спирте, и его можно извлечь настаиванием листьев в спирте. Раствор хлорофилла имеет зеленый цвет и флуоресцирует.

Флуоресценция хлорофилла в растворе объясняется тем, что электроны в молекуле хлорофилла поглощают световую энергию, в результате они покидают орбиту, соответствующую их исходному состоянию, и перескакивают на высшую орбиту, соответствующую их «возбужденному» состоянию. Затем электроны возвращаются обратно на свою первоначальную орбиту, и при этом переходе они отдают поглощенную ими энергию в виде света флуоресценции. Хлорофилл в растворе не способен запасать энергию света. Другая картина наблюдается s клетке, где молекулы хлорофилла встроены в структуру хлоропласта и находятся в соединении с молекулами ферментов, липоидов и других веществ. Хлорофилл в зеленом листе при освещении не флуоресцирует. Поглощенная хлорофиллом энергия света здесь не рассеивается, а преобразуется в энергию химических связей.

Для того чтобы разобраться в механизме этого преобразования, обратимся к схеме фотосинтеза.

Процесс фотосинтеза начинается с освещения хлоропласта видимым светом. Фотон «ударяет» в электрон молекулы хлорофилла, сообщает ему энергию, и электрон переходит в «возбужденное» состояние: он покидает основную орбиту и перескакивает на высшую орбиту. После этого он сразу же падает обратно. При этом избыточная энергия электрона частично переходит в тепло (около 25%), а большей частью передается соединениям, находящимся в клетке, вызывая их превращения.

Часть «падающих» электронов захватывается ионами водорода. В клетке всегда имеется некоторое количество Н+ и ОН -ионов, так как в водном растворе часть молекул воды находится в диссоциированном состоянии:

Н2О = Н++ОН- (1)

Ион водорода присоединяет электрон и превращается в атом водорода:

Н++ е = Н (2)

Ион гидроксила, оставшийся без своего противоиона, немедленно же передает свой электрон другим молекулам или ионам и превращается в свободный радикал ОН:

ОН-= е + ОН (3)

Свободные атомы водорода и ОН -радикалы в химическом отношении весьма активны. Атомы водорода присоединяются к органическому веществу, имеющему сложную структуру и соответственно довольно громоздкое название: никотинамидди-нуклеотидфосфат (сокращенно НАДФ). НАДФ всегда содержится в клетке; присоединив водород, он переходит в восстановленную форму:

НАДФ + 2Н = НАД ФxН2 (4)

Свободные ОН -радикалы взаимодействуют друг с другом, причем образуется молекулярный кислород, выделяющийся в атмосферу, и вода:

4ОН = О2 + 2Н2О (5)

Просуммировав реакции 1, 2, 3 и 5, получим:

2О = О2 + 4Н (6)

Таким образом, молекулярный кислород, образующийся при фотосинтезе, возникает в результате разложения (фотолиза) воды. Это не ферментативный процесс. По своему механизму фотолиз воды сходен с электролизом воды. Вспомните, что при пропускании электрического тока через водный раствор ионы водорода получают электроны от катода и превращаются в атомы водорода (если бы в растворе находился НАДФ, он присоединил бы эти атомы водорода и перешел в НАДФхН2), а ОН -ионы, отдав электроны аноду, превращаются в свободные ОН -радикалы, из которых образуется молекулярный кислород и вода.

Энергия другой части «падающих» электронов, а также электронов, отделяющихся от ионов гидроксила и обладающих еще некоторым запасом энергии, преобразуется в энергию макроэргической фосфатной связи: из АДФ (всегда присутствующей в клетке) и неорганического фосфата (Ф) синтезируется АТФ:

АДФ + Ф=АТФ

Таким образом, избыточная энергия возбужденных электронов при переходе их в исходное состояние порождает три процесса:

  1. Фотолиз воды с образованием молекулярного кислорода.

  2. Восстановление НАДФ с образованием НАДФxН2.

  3. Синтез АТФ.

Эти реакции идут только на свету. Их осуществление является непосредственным результатом поглощения хлорофиллом лучистой энергии. Поэтому данная стадия фотосинтеза называется световой фазой. Дальнейшие синтетические процессы фотосинтеза протекают как на свету, так и в темноте. Поэтому комплекс этих реакций называется темновой фазой.

Темновая фаза фотосинтеза представляет собой ряд последовательных ферментативных реакций. В осуществлении этих реакций принимают участие синтезированные в световую фазу АТФ и НАДФxН2. Центральное место среди реакций темновой фазы занимает реакция связывания углекислоты: СО2 диффундирует в лист из атмосферы и включается в состав одного из промежуточных соединений. В конечном итоге образуются углеводы — сначала моносахариды, затем ди- и полисахариды.

Итак, в световую фазу фотосинтеза световая энергия Солнца преобразуется в энергию химических связей НАДФxНг и АТФ. В темповую фазу энергия этих веществ (НАДФxН2 и АТФ) расходуется на синтез углеводов.

Процесс фотосинтеза представляет основной механизм, при помощи которого зеленые растения производят органические вещества. Все вещества растения, любая его «урожайная» часть — плоды, семена, корнеплоды, древесина и т. д. — образуются из веществ, порожденных в результате фотосинтетической активности его клеток.

Продуктивность фотосинтеза составляет примерно 1 г органических веществ на 1 мг площади листьев в 1 час. Таким образом, при прочих равных условиях урожай тем выше, чем больше поверхность листьев выросших растений и чем дольше они функционируют как фотосинтетические системы.

В изучение роли света и хлорофилла в процессе усвоения СО2 при фотосинтезе большой вклад внес крупнейший русский ученый К. А. Тимирязев. Тимирязеву принадлежат и непревзойденные работы по популяризации знаний по фотосинтезу, о котором он писал так: «Это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете». Это вполне обоснованное утверждение, так как фотосинтез не только основной поставщик органических соединений, но и единственный источник свободного кислорода на Земле.

Растительные клетки, как и все другие клетки, постоянно дышат, т. е. поглощают кислород и выделяют СО2. Днем же наряду с дыханием с помощью хлорофилл содержащего механизма растительные клетки преобразуют световую энергию в химическую: они синтезируют органические вещества. При этом в качестве побочного продукта реакции выделяется молекулярный кислород. Количество кислорода, выделяемого растительной клеткой в процессе фотосинтеза, в 20—30 раз больше, чем поглощение его в одновременно идущем процессе дыхания. Понятно поэтому, что днем, когда растения и дышат, и фотосинтезируют, они обогащают воздух кислородом, а ночью, когда фотосинтез прекращается, они только дышат, т. е. поглощают кислород и выделяют углекислоту.

Хемосинтез

Кроме клеток зеленых растений, автотрофность свойственна также некоторым бактериям, у которых нет хлорофилла. Способ, с помощью которого они мобилизуют энергию для синтетических реакций, принципиально иной, нежели у растительных клеток. Этот тип автотрофов был открыт русским ученым-микробиологом С.Н. Виноградским. Для синтезов бактерии используют энергию химических реакций. Они обладают специальным ферментным аппаратом, позволяющим им преобразовывать энергию химических реакций, в частности энергию реакций окисления неорганических веществ, в химическую энергию синтезируемых органических соединений. Этот процесс называется хемосинтезом.

Наиболее известные автотрофы-хемосинтетики — нитрифицирующие бактерии. Источником энергии у одной группы этих бактерий служит реакция окисления аммиака в азотистую кислоту; другая группа нитрифицирующих бактерий использует энергию, выделяющуюся при окислении азотистой кислоты в азотную. Автотрофами-хемосинтетиками являются железобактерии и серобактерии. Первые из них используют энергию, выделяющуюся при окислении двухвалентного железа в трехвалентное, вторые окисляют сероводород до серной кислоты.

Роль автотрофов-хемосинтетиков очень велика, особенно нитрифицирующих бактерий. Они имеют важное значение для повышения урожайности, так как в результате их жизнедеятельности азот, находящийся в виде соединений, недоступных для усвоения растениями, превращается в соли азотной кислоты, которые хорошо ими усваиваются.

II. Закрепление изученного материала

  1. Каковы общие закономерности обмена веществ?

  2. Какова связь между пластическим и энергетическим обменами?

  3. В чем заключается разница между автотрофными и гетеротрофными организмами?

  4. Что такое фотолиз воды?

III. Домашнее задание

  1. Сравнивая фотосинтез и хемосинтез, заполните таблицу

Название процесса

Углеводы

Энергия

Вещества, образующиеся в результате процесса

  1. Фотосинтез

  2. Хемосинтез





Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Серия олимпиад «Зима 2025»



Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее