«Зима 2025»

Практикум по теме: "Вычисление по формуле"

Практикум по математике "Вычисления по формуле" предлагается учащимся для подготовки к ОГЭ по заданиям №13

Олимпиады: Математика 1 - 11 классы

Содержимое разработки

Вычисление по формуле

1.В фирме «Эх, прокачу!» сто­и­мость поездки на такси (в рублях) рас­счи­ты­ва­ет­ся по фор­му­ле , где — дли­тель­ность поездки, вы­ра­жен­ная в ми­ну­тах . Поль­зу­ясь этой формулой, рас­счи­тай­те стоимость 8-минутной поездки. Ответ: 183.

2. Площадь па­рал­ле­ло­грам­ма можно вы­чис­лить по фор­му­ле , где  — сто­ро­ны параллелограмма (в метрах). Поль­зу­ясь этой формулой, най­ди­те площадь параллелограмма, если его сто­ро­ны 10 м и 12 м и . Ответ: 60.

3. В фирме «Чистая вода» сто­и­мость (в рублях) ко­лод­ца из же­ле­зо­бе­тон­ных колец рас­счи­ты­ва­ет­ся по фор­му­ле  , где   — число колец, уста­нов­лен­ных при рытье колодца. Поль­зу­ясь этой формулой, рас­счи­тай­те стоимость ко­лод­ца из 11 колец. 50 500.

4. Зная длину сво­е­го шага, че­ло­век может приближённо под­счи­тать пройденное им рас­сто­я­ние s по фор­му­ле s = nl, где n — число шагов, l — длина шага. Какое рас­сто­я­ние прошёл человек, если l = 80 см, n = 1600? Ответ вы­ра­зи­те в километрах. Ответ: 1,28

5. асстояние s (в метрах) до места удара мол­нии можно приближённо вы­чис­лить по фор­му­ле s = 330t, где t — ко­ли­че­ство секунд, про­шед­ших между вспыш­кой молнии и уда­ром грома. Определите, на каком рас­сто­я­нии от места удара мол­нии находится наблюдатель, если t = 10 с. Ответ дайте в километрах, округ­лив его до целых. Ответ: 3.

6. Из фор­му­лы цен­тро­стре­ми­тель­но­го уско­ре­ния a = ω2R най­ди­те R (в метрах), если ω = 4 с−1 и a = 64 м/с2. Ответ: 4.

7.Период ко­ле­ба­ния математического ма­ят­ни­ка (в секундах) при­бли­жен­но можно вы­чис­лить по фор­му­ле , где — длина нити (в метрах). Поль­зу­ясь этой формулой, най­ди­те длину нити ма­ят­ни­ка (в метрах), пе­ри­од колебаний ко­то­ро­го составляет 3 секунды. Ответ: 2,25.

2. Радиус опи­сан­ной около тре­уголь­ни­ка окружности можно найти по фор­му­ле  , где   — сто­ро­на треугольника,   — про­ти­во­ле­жа­щий этой сто­ро­не угол, а   — ра­ди­ус описанной около этого тре­уголь­ни­ка окружности. Поль­зу­ясь этой формулой, най­ди­те  , если  , а  . 0,4.

3. Длину бис­сек­три­сы треугольника, проведённой к сто­ро­не  , можно вы­чис­лить по фор­му­ле  . Вы­чис­ли­те  ,  если  . 0,8.

4. За 20 минут ве­ло­си­пе­дист про­ехал 7 ки­ло­мет­ров. Сколь­ко ки­ло­мет­ров он про­едет за t минут, если будет ехать с той же ско­ро­стью? За­пи­ши­те со­от­вет­ству­ю­щее вы­ра­же­ние. Ответ: 0,35t.

1. Длину окружности   можно вы­чис­лить по фор­му­ле , где  — ра­ди­ус окружности (в метрах). Поль­зу­ясь этой формулой, най­ди­те радиус окружности, если её длина равна 78 м. (Считать ). Ответ: 13.

2. Площадь ромба    можно вы­чис­лить по фор­му­ле  , где    — диа­го­на­ли ромба (в метрах). Поль­зу­ясь этой формулой, най­ди­те диагональ  , если диа­го­наль    равна 30 м, а пло­щадь ромба 120 м2 8.

3. Площадь тре­уголь­ни­ка    можно вы­чис­лить по фор­му­ле  , где   — сто­ро­на треугольника,   — высота, про­ве­ден­ная к этой сто­ро­не (в метрах). Поль­зу­ясь этой формулой, най­ди­те сторону  , если пло­щадь треугольника равна  , а вы­со­та    равна 14 м. 4

4. Площадь тра­пе­ции    можно вы­чис­лить по фор­му­ле  , где   — ос­но­ва­ния трапеции,   — вы­со­та (в метрах). Поль­зу­ясь этой формулой, най­ди­те высоту  , если ос­но­ва­ния трапеции равны    и  , а её пло­щадь    Ответ: 4.

 

5. Радиус впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник окруж­но­сти можно найти по фор­му­ле  , где    и    — катеты, а   — ги­по­те­ну­за треугольника. Поль­зу­ясь этой формулой, най­ди­те  , если    и   Ответ: 3,2.

6. Объём пи­ра­ми­ды вычисляют по фор­му­ле  , где   — пло­щадь основания пирамиды,   — её высота. Объём пи­ра­ми­ды равен 40, пло­щадь основания 15. Чему равна вы­со­та пирамиды? 8.

7. Площадь лю­бо­го вы­пук­ло­го че­ты­рех­уголь­ни­ка можно вы­чис­лять по фор­му­ле  , где   — длины его диагоналей, а    угол между ними. Вы­чис­ли­те  , если  . Ответ: 0,4.

8. Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия (t °C) в шкалу Фа­рен­гей­та (t °F), поль­зу­ют­ся фор­му­лой F = 1,8C + 32 , где C — гра­ду­сы Цельсия, F — гра­ду­сы Фаренгейта. Какая тем­пе­ра­ту­ра по шкале Цель­сия со­от­вет­ству­ет 6° по шкале Фаренгейта? Ответ округ­ли­те до десятых. Ответ: −14,4.

9. Центростремительное уско­ре­ние при дви­же­нии по окруж­но­сти (в м/c2 ) можно вы­чис­лить по фор­му­ле где — уг­ло­вая ско­рость (в с−1), а R — ра­ди­ус окружности. Поль­зу­ясь этой формулой, най­ди­те рас­сто­я­ние R (в метрах), если уг­ло­вая ско­рость равна 3 с−1, а цен­тро­стре­ми­тель­ное уско­ре­ние равно 45 м/c2. Ответ: 5.

10. Из за­ко­на все­мир­но­го тя­го­те­ния вы­ра­зи­те массу и най­ди­те её ве­ли­чи­ну (в килограммах), если и гра­ви­та­ци­он­ная по­сто­ян­ная Ответ: 1000.

11. Полную ме­ха­ни­че­скую энер­гию тела (в джоулях) можно вы­чис­лить по фор­му­ле где — масса тела (в килограммах), — его ско­рость (в м/с), — вы­со­та по­ло­же­ния цен­тра масс тела над про­из­воль­но вы­бран­ным ну­ле­вым уров­нем (в метрах), а — уско­ре­ние сво­бод­но­го па­де­ния (в м/с2). Поль­зу­ясь этой формулой, най­ди­те (в метрах), если а Ответ: 5.

12. Мощ­ность по­сто­ян­но­го тока (в ват­тах) вы­чис­ля­ет­ся по фор­му­ле P = I2R, где I — сила тока (в ам­пе­рах), R — со­про­тив­ле­ние (в омах). Поль­зу­ясь этой фор­му­лой, най­ди­те со­про­тив­ле­ние R (в омах), если мощ­ность со­став­ля­ет 150 ватт, а сила тока равна 5 ам­пе­рам.  Ответ: 6.

13. Ав­то­мо­биль про­ехал 200 ки­ло­мет­ров и из­рас­хо­до­вал при этом a лит­ров бен­зи­на. Сколь­ко лит­ров бен­зи­на по­тре­бу­ет­ся, чтобы про­ехать 37 ки­ло­мет­ров при таких же усло­ви­ях езды? За­пи­ши­те со­от­вет­ству­ю­щее вы­ра­же­ние. Ответ: 0,185a.

14. Закон Ку­ло­на можно за­пи­сать в виде где — сила вза­и­мо­дей­ствия за­ря­дов (в нью­то­нах), и — ве­ли­чи­ны за­ря­дов (в ку­ло­нах), — ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти (в Н·м2/Кл2 ), а — рас­сто­я­ние между за­ря­да­ми (в мет­рах). Поль­зу­ясь фор­му­лой, най­ди­те ве­ли­чи­ну за­ря­да (в ку­ло­нах), если Н·м2/Кл2, Кл, м, а Н. Ответ: 0,004.

15. Закон все­мир­но­го тя­го­те­ния можно за­пи­сать в виде где — сила при­тя­же­ния между те­ла­ми (в нью­то­нах), и — массы тел (в килограммах), — рас­сто­я­ние между цен­тра­ми масс (в мет­рах), а — гра­ви­та­ци­он­ная постоянная, рав­ная 6.67 · 10−11 H·м2/кг2. Поль­зу­ясь фор­му­лой, най­ди­те массу тела (в килограммах), если Н, кг, а м. Ответ: 4000.

16. Закон Джоуля–Ленца можно за­пи­сать в виде Q = I2Rt, где Q — ко­ли­че­ство теп­ло­ты (в джоулях), I — сила тока (в амперах), R — со­про­тив­ле­ние цепи (в омах), а t — время (в секундах). Поль­зу­ясь этой формулой, най­ди­те время t (в секундах), если Q = 2187 Дж, I = 9 A, R = 3 Ом. Ответ: 9.

17. Площадь четырёхугольника можно вы­чис­лить по фор­му­ле где и — длины диа­го­на­лей четырёхугольника, — угол между диагоналями. Поль­зу­ясь этой формулой, най­ди­те длину диа­го­на­ли если a Ответ: 4.

18. Закон Менделеева-Клапейрона можно за­пи­сать в виде PV = νRT, где P — дав­ле­ние (в паскалях), V — объём (в м3), ν — ко­ли­че­ство ве­ще­ства (в молях), T — тем­пе­ра­ту­ра (в гра­ду­сах Кельвина), а R — уни­вер­саль­ная га­зо­вая постоянная, рав­ная 8,31 Дж/(К⋅моль). Поль­зу­ясь этой формулой, най­ди­те тем­пе­ра­ту­ру T (в гра­ду­сах Кельвина), если ν = 68,2 моль, P = 37 782,8 Па, V = 6 м3.



Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Серия олимпиад «Зима 2025»



Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее